
Marsyas Developers Manual
For version 0.2

Music Analysis Retrieval and SYnthesis for Audio Signals

Graham Percival and George Tzanetakis

i

Table of Contents

1 Contributing to Marsyas . 1
1.1 Contributing documentation . 1

1.1.1 Manual . 1
1.1.2 Examples . 1

1.2 Contributing source documentation . 1
1.3 Code style . 2
1.4 Playing in the mudbox . 3
1.5 Contributing applications . 3
1.6 Contributing system code . 3

1.6.1 Adding/removing to/from the build system 3
1.6.2 Contributing non-MarSystem system code 4
1.6.3 Contributing MarSystems . 4

1.7 Sending a patch . 4
1.8 Building documentation . 5
1.9 Build system details . 5
1.10 Command-line arguments . 5
1.11 Making a release . 6

2 Automatic testing . 7
2.1 Unit tests . 7

2.1.1 What are unit tests? . 7
2.1.2 What testing framework does Marsyas use? 7
2.1.3 How do I add a new test? . 8
2.1.4 How do I run the tests? . 8

2.2 Black-box tests . 9
2.2.1 What does "black-box" mean? . 9

Definition . 9
2.2.2 How do I write a black-box test? . 9
2.2.3 How do the tests work? . 10

List of tests . 10
Approximate matching (no rounding errors) 10

2.2.4 When a test fails... 10
Don’t panic! . 10
Updating the test . 10
Temporarily disabling a test . 11

2.2.5 Why should I care? . 11
Developers . 11
New users . 11

2.3 Daily Auto-tester . 11

The Index . 12

Chapter 1: Contributing to Marsyas 1

1 Contributing to Marsyas

This chapter explains how to integrate your code in Marsyas so that others may use it.

1.1 Contributing documentation

The documentation for Marsyas is still a work in progress; we can use all the help we can get.
Don’t say “oh, I don’t know enough” or “I’m not good at writing English.” The question
is not “could anybody create something better than my suggestion?” – the question is “is
this better than nothing?” Remember the most important thing about documentation:

Documentation is like sex: when it is good, it is very, very good; and when it
is bad, it is better than nothing. (Dick Brandon)

1.1.1 Manual

If you can add something to the docs, please send an email to <marsyas-

developers@lists.sourceforge.net>. A formal patch for the texidoc is not required;
we can take care of the technical details. Here is an example of a perfect documentation
suggestion:

To: marsyas-users@lists.sourceforge.net

From: helpful-user@example.net

Subject: doc addition

In 4.2.1 Implicit patching vs. explicit patching, please add

It could be helpful to think of this like blah blah blah.

to the second paragraph.

1.1.2 Examples

Small, easy-to-understand examples are also great. If you have some source code that
illustrates something, we can add it to ‘examples/’. We use these examples to generate
the Section “Example programs” in Marsyas User Manual. You don’t have to write any
English at all!

1.2 Contributing source documentation

In your .h file, just after the namespace Marsyas \n { line, please include a short docu-
mentation snippet:

namespace Marsyas

{

/**

\ingroup Processing

\brief Multiply input realvec with gain

Simple MarSystem example. Just multiply the values of the input

realvec with gain and put them in the output vector. This object can be

used as a prototype template for building more complicated MarSystems.

Chapter 1: Contributing to Marsyas 2

Controls:

- \b mrs_real/gain [w] : adjust the gain multiplier.

*/

class Gain: public MarSystem

{

Warning: the old convention included a \class Gain; this was a mistake in our under-
standing of Doxygen. Please do not include an explicit class name; just make sure that the
doc snippet occurs above the class.

The [w] indicates that the control should be written and not (usefully) read. Valid
options are [r], [w], and [rw].

The \ingroup GROUP will generally be Processing, Analysis, or Synthesis. For details
about these categories, see Section “MarSystem reference” in Marsyas User Manual. For a
complete list of all available groups, see the file ‘marsyas/groups.doxy’.

There is one special group: Basic Processing. This is a subset of the Processing group.
No MarSystem should only be in the Basic group; it should be placed in both groups, with

\ingroup Processing Basic

Code which is not a MarSystem should be placed in the Notmar group.

A complete list of groups can be found in the ‘marsyas/groups.doxy’ file. The main
groups are Composites, Basic, IO, Processing, Analysis, and Synthesis.

1.3 Code style

• We use the Allman code style (also known as ANSI or BSD code style) with tabs as
indentation. Code style is of course somewhat personal and we can almost guarantee
that everybody will hate some aspect of the style, but having a uniform style makes it
much easier to understand other people’s code and fix bugs.

If possible, configure your editor/IDE to use this code style. Otherwise, you can use the
astyle tool (Artistic Style) (with the ansi style) for automated clean up of code style
issues (braces, indentation, whitespace). For ease of use, we have a file ‘misc/astylerc’
with predefined options. To use it, call

astyle --options=/path/to/marsyas_topdir/misc/astylerc filename.cpp

‘filename.cpp’ can include wildcards, like ‘*.h’ and ‘*.cpp’.

You do not need to format your source code according to this style, but don’t complain
if someone else modifies/cleans up your file accordingly.

Unfortunately, due to historical reasons the code style is not consistant within the
Marsyas source code itself.

• Files should use unix line endings.

• We strongly encourage the use of underscores_ after member variables (“member vari-
ables” are variables which can be used throughout the class). In other words, in your
‘.h’ files use:

class MyMar: public MarSystem

{

http://astyle.sourceforge.net/

Chapter 1: Contributing to Marsyas 3

private:

mrs_real varname_; // don’t use a plain "varname"

...

}

• By convention, a program (not a MarSystem) should return exit(0) upon successful
completion. If any problems arise, the program should return a number greater than
0.

1.4 Playing in the mudbox

The easiest way to add code to Marsyas is to add a test to ‘apps/mudbox/mudbox.cpp’.
This file is a huge mess of short examples, many out of date and no longer working, but it
seems popular.

To add your own test, follow the general pattern of other tests. You will need to modify

• void printHelp(string progName) : display the argument which calls your test.

• int main(int argc, const char **argv) : call your test function. Yes, that’s a 100-
line collection of else if statements. (see “huge mess” , above)

• void test_myTestName() : your actual code.

1.5 Contributing applications

The source code for applications is in the ‘apps/’ directory. The easiest way to get started
is probably to copy everything from an existing directory, then modify the files accordingly.

You should update all these files:

• ‘src/apps/MYDIR/CMakeLists.txt’

• ‘src/apps/CMakeLists.txt’

By convention, your program should return exit(0) upon successful completion. If any
problems arise, the program should return a number greater than 0.

1.6 Contributing system code

1.6.1 Adding/removing to/from the build system

To add files to the Marsyas build system, use

addMarsystem MyMarSystemName

addClass MyClassName� �
Warning: Remember to do svn add! Adding files to the build system does not
add them to svn.
 	

For text files (including source code .h and .cpp), please set

svn propset svn:eol-style native FILE

for example

svn propset svn:eol-style native *.h *.cpp

It would be nice if svn did this automatically, but unfortunately it does not. :(

To remove files from the build system, use

Chapter 1: Contributing to Marsyas 4

removeMarsystem MyMarSystemName

removeClass MyClassName� �
Warning: Remember to do svn rm! Removing files from the build system does
not remove them from svn.
 	

1.6.2 Contributing non-MarSystem system code

If you have created a useful library or set of functions which you want to share with oth-
ers, you may add it to the Marsyas source code. The new files should be placed in the
‘src/marsyas/’ directory, and added to the build process.

Automatically

There is a Python script which automates this process; please see Section 1.6.1
[Adding/removing to/from the build system], page 3. If you are a masochist and wish to
do this manually, see below.

Manually

The easiest way is to look for any appearances of realvec in the below files, and duplicate
these entries using your ‘myfile’.

• ‘src/marsyas/CMakeLists.txt’

1.6.3 Contributing MarSystems

If you have created a useful MarSystem which you want to share with others, you may add
it to the Marsyas source code. THIS IS NOT REQUIRED FOR BUILDING YOUR OWN
APPLICATONS!!! See Section “Compiling and using a new MarSystem” in Marsyas User
Manual.

Automatically

There is a Python script which automates this process; please see Section 1.6.1
[Adding/removing to/from the build system], page 3. If you are a masochist and wish to
do this manually, see below.

Manually

The new MarSystem should be placed in the ‘src/marsyas/’ directory, and must be added
to ‘MarSystemManager.cpp’ and the build process. The easiest way is to look for Gain and
do the same thing with your new MarSystem.

• ‘src/marsyas/CMakeLists.txt’

1.7 Sending a patch

Checklist

• Does Marsyas still compile?

• Does Marsyas still pass make test?

• Did you follow Section 1.2 [Contributing source documentation], page 1 (if applicable)?

Chapter 1: Contributing to Marsyas 5

• Did you add your file(s) to the build process?

If the answer to all these questions is yes, then proceed.

Producing the patch

To produce a patch with svn, simply type

svn diff > mypatch.diff

and then send the resulting file to <marsyas-developers@lists.sourceforge.net>.

If you have SVN write access, you may simply type

svn ci

1.8 Building documentation

This manual is built with texinfo, and the source code documentation is created with
doxygen. These software packages may be installed from

• texinfo

• doxygen

• graphviz

The latest version of the manual is in the SVN tree; create a new directory doc-build,
run cmake, and make.

Source-highlighted examples are stored in the ‘doc/source-doc/’ directory. These may
be built with this additional program and the following command:

• GNU/source-highlight

scripts/generate-source-docs.sh

1.9 Build system details

The main file is src/CMakeLists.txt. Additional modules are in cmake-modules/.

1.10 Command-line arguments

We’re trying to avoid have the same command-line arguments meaning different things in
different programs. All arguments should have a short form (1-2 characters) and a long
form. Here is a list of commands with specific meanings; if you want to do something
different, then find a different pair of letters for the short form.

(null) : same as -u

-u --usage

-h --help

-v --verbose

-s --silent

-q --quiet

-o --output : output to a file

-g --gain

http://www.gnu.org/software/texinfo/
http://www.doxygen.org/
http://www.graphviz.org/
http://www.gnu.org/software/src-highlite/

Chapter 1: Contributing to Marsyas 6

-ws --windowsize

-hs --hopsize

-ms --memorysize

-sa --start

-ln --length

-pl --plugin

-sr --samplerate

-ch --channels

-co --collection

We’re still in the process of renaming arguments, so there may be inconsistencies between
actual program behaviour and this list.

1.11 Making a release

Checklist:

1. From the top source dir, build in RELEASE mode and test:

mkdir -p build-release/

cd build-release/

cmake ../src/

make clean ; make -j3

make test

2. Build the docs from the top source dir,

mkdir -p build-doc

cd build-doc

cmake ../doc/

make clean ; make -j3

3. In the top source dir, create tarball (adjust number as necessary):

svn export . /tmp/marsyas-0.4.8/

cd /tmp && tar -czf marsyas-0.4.8.tar.gz marsyas-0.4.8/

4. Upload the tarball. Either use the web interface, or command-line. Update the filename
and gperciva@ as needed.

rsync /tmp/marsyas-0.4.8.tar.gz \

gperciva@frs.sourceforge.net:/home/frs/projects/marsyas/marsyas/

RSYNC CURRENTLY UNTESTED!

5. Set the default download to the new file. To my knowledge, this must be done with
the online sourceforge interface.

6. Upload the docs from the top source dir,

scripts/upload-docs.sh

That script might require directory names to be adjusted.

Chapter 2: Automatic testing 7

2 Automatic testing

In an attempt to reduce the number of times we break working code, we have added some
testing mechanisms to Marsyas.

2.1 Unit tests

These tests are highly focused on specific portions of code.

2.1.1 What are unit tests?

Unit tests are simple, short tests that test the functionality of individual modules in your
source code. A module can be a method of a class, or can be smaller or larger parts of
your code. Unit tests are usually developed at the same time code is written, independently
testing each small component of your algorithm is on it’s own.

The main goal of unit testing is to isolate each part of your code and ensure that each
part is correct. This allows you to refactor your code at a later time with the confidence
that your refactoring gives the same behaviour as the original code. This allows you to
quickly write code that works, and then later come and refactor your code to make it run
faster.

Unit testing also allows you to check whether a particular piece of code still works
properly. This is useful in a large software project such as Marsyas which has currently
over 180,000 lines of code and many developers on different continents.

Unit tests can also provide a sort of living documentation for the system. Well written
unit tests have example code in them that can help new developers understand how to
use different MarSystems. Written documentation added to the unit tests also helps in
this regard, and often the best place for verbose documentation is in the unit tests rather
than in the main functions themselves, where they can occasionally hide the beautiful logic
therein.

Test-Driven Development (TDD) is a technique where you first write your tests, and then
write the actual that will make the tests pass. In TDD you have short iterative development
cycles on pre-written test cases that define desired improvements or new functionality. On
each iteration of the cycle, you write just the code that you need to make the tests pass.
With TDD you write just the code that you need, not the code you think you might need
at some point in the future.

Cxxtest unit testing framework that is built into Marsyas lets you write your tests either
before, as in standard unit testing, or after, as in TDD.

2.1.2 What testing framework does Marsyas use?

Marsyas uses the GPLed Cxxtest (http://cxxtest.sourceforge.net/) testing framework.
Cxxtest is a JUnit/CppUnit/xUnit-like framework for C++. We chose Cxxtest because it
is lightweight, easy-to-use, is very portable and is distributed under the GPL licence. It is
easier to use than other C++ testing frameworks and features a very rich set of assertions.

An example can be found in marsyas/src/tests/unit tests/TestSelector.h

#include "Selector.h"

using namespace Marsyas;

Chapter 2: Automatic testing 8

class Selector_runner : public CxxTest::TestSuite

{

public:

void

setUp()

{

// ... setup the "in" realvec ...

}

void test_all_input_copied_to_output_by_default(void)

{

selector->myProcess(in,out);

TS_ASSERT_EQUALS(out(0,0), 0.1);

}

}

In this example, we setup the input realvec “in” in the function “setup()”. We then add
a test by creating a new method that begins with the word “test ”.

2.1.3 How do I add a new test?

The easiest way to add a new test is to copy the file marsyas/src/tests/unit tests/TestSample.h
to a new file of your choice, for example, to “TestAutoCorrelation.h”. “TestSample.h” has
sample code in it that will help you get started, and contains copious documentation.

Add new tests for all the parts of your class that you want to test. Remember to start
all the new function names with the string “test ” so that CxxTest knows that this function
is one that you wish to test.

You then need to add a line to “marsyas/src/tests/unit tests/CMakeLists.txt” to tell
CMake to compile this new file:

marsyas_unit_test(AubioYin AubioYin_runner.cpp)

In order to generate the AubioYin runner.cpp file from the TestAubioYin.h file, you
then need to run the command:

./scripts/generate-unit-test-cpp-files.py

2.1.4 How do I run the tests?

To run the tests, you first need to enable testing in your build directory. To do this, do
something like:

cd marsyas

mkdir build-with-tests

cd build-with-tests

ccmake ../src

Then type “t” to see the advanced options and turn on the “BUILD TESTS” option.

The tests will then be automatically built if you then compile Marsyas:

make -j3

Chapter 2: Automatic testing 9

2.2 Black-box tests

These tests are deliberately simple and easy to understand.

2.2.1 What does "black-box" mean?

Definition

The term “black-box testing” seems to mean something different to each project, website,
and software engineering academic. So I shall define what we mean by “black-box testing”
in the context of Marsyas “black-box testing” :

Does it work the way it used to?

This is checked as follows:

1. Pick a program to test. Find some input for the program (generally a sound file). Save
the input.

2. Run the program on the saved input. Save the output (either another sound file, or
some text).

3. Wait / change stuff / let other people change stuff.

4. Run the program with the initial input. Compare the current output to the initially
stored output. If they are different, the test fails.

5. Goto step 3.

In other words, these tests do not check for correctness; they simply check for consistency.
Fixing a bug could result in a test “failing” . However, this is not a problem: see Section 2.2.4
[When a test fails...], page 10

2.2.2 How do I write a black-box test?

Writing a black-box test is very easy.

1) Run your program with the normal command line flags on an input audio file. I
would suggest to use one of the files in the marsyas/src/tests/black-box/input directory
if possible. To test the waveform generation functionality of sound2png I ran it with the
following flags:

sound2png -m waveform marsyas/src/tests/black-box/input/right.wav waveform.png

2) Copy the output file to the marsyas/src/tests/black-box/output directory

cp waveform.png marsyas/src/tests/black-box/output

3) Add a section to marsyas/src/tests/black-box/CMakeLists.txt for your new test:

set(ARGUMENTS

-m waveform

)

black-box_explicit(sound2png_waveform right.wav waveform.png sound2png "${ARGUMENTS}")

The first section “ARGUMENTS” are where you should put all the command line argu-
ments for your program. “black-box explicit” is a test MACRO that we’ve written to help
make it easy to write tests like this, and it takes 5 arguments:

macro(black-box_audio REG_NAME REG_INPUT REG_OUTPUT REG_COMMAND REG_ARGS)

REG NAME is the name of your test. Each test must be named differently, if not, the
duplicate tests won’t be run.

Chapter 2: Automatic testing 10

REG INPUT is the input file for your test. In our case this was “right.wav”

REG OUTPUT is the output file for your test. In our case this was “waveform.png”

REG COMMAND is the command to run, “sound2png” in this example.

REG ARGS are the command line arguments to REG COMMAND.

2.2.3 How do the tests work?

List of tests

Tests are defined in ‘src/tests/black-box/CMakeLists.txt’. Each test is split into two
steps: creating an audio file, and comparing that audio file to the previous (working) audio
file.

Approximate matching (no rounding errors)

When an audio file is specified as an “answer” file,

audioCompare phasevoder.au ../output/right-phasevocoder.au

we attempt to match the files approximately, to avoid rounding mismatches on different
operating systems. Each sample must be very close to the corresponding sample in the
answer file, but they need not be exact.

2.2.4 When a test fails...

Don’t panic!

If a test fails as a result of your work, remember that these are consistency tests, not cor-
rectness tests. Do you expect your work to produce any different output for that particular
test?

For example, if you discover (and fix) a bug in the inverse FFT, the phasevocoder test will
probably “fail” . This is to be expected: the previously-recorded output of the phasevocoder
faithfully archived the buggy output, so the bug-free output is detected as different.

On the other hand, suppose you are adding a new classifier for machine learning, and the
Windowing test breaks. This is not expected; a new feature should not impact basic func-
tions like taking a Hanning window! In this case, you should investigate before committing
your changes to svn.

Updating the test

If you are certain that your patch (and new output file) are good, then you should update
the answer file. This is simply a matter of copying your new output file over the old answer
file.

The new output file is found in ‘BUILD_DIR/tests/black-box/’. You may also create
the file manually yourself; the exact command-line arguments used for each test can be seen
with:

make test ARGS="-V"

Please commit the changed ‘src/tests/black-box/output/<FILE.au>’ in a separate
svn commit, and make sure the log message explains that your new output is superior to
the old one.

Chapter 2: Automatic testing 11

Temporarily disabling a test

If you are planning on doing a lot of work on part of Marsyas (which would result in
tests failing, but having no working output yet), tests may be commented out in the
‘src/tests/black-box/CMakeLists.txt’ file. Again, please commit this change in a sep-
arate svn commit with a log message that explains this.

2.2.5 Why should I care?

Developers

Think of these tests as a mutual assistance pact: you should care about not breaking other
people’s code, because other people will care about not breaking your code.

Of course, this requires that you create black-box tests for your own code. Due to
practicality, we can’t check every single case of every single program. So instead, create one
or two tests which investigate as many things as possible. For example, instead of simply
testing if sfplay can output a sound file, we test changing the gain, starting at a specific
time, and only playing for a specific length.

We recommend discussing potential black-box tests on the developer mailist.

New users

These tests are also very useful if you start investigating a new aspect of Marsyas. Currently
there are many unmaintained MarSystems, applications, and projects in Marsyas. New
users can easily waste hours trying to use part of the codebase which has been broken for
months.

Having a testing mechanism means that users know that the code is working – at least,
working for the exact command and input that the test uses. If (when?) a user has problems
getting something to work in Marsyas, he can turn to the regtests: if a regtest passes but
his own code doesn’t work, he can compare his code against the regtest code.

Trust me, by now I’ve probably spent 20 hours trying to make broken code to work –
sometimes when the developers already knew it was broken! Quite apart from the waste
of time, it’s incredibly demoralizing. It was this problem that inspired me to create these
tests.

2.3 Daily Auto-tester

We run the script

scripts/dailytest.sh

every day. This script performs a few tasks:

1. Exports a clean copy of the source tree from svn.

2. Builds Marsyas.

3. Runs the tests.

4. Builds the documentation.

An email is sent to some developers with the results of these tests. If you would like to
receive these daily emails, please enquire on the developer mailist.

The Index 12

The Index

(Index is nonexistent)

	Contributing to Marsyas
	Contributing documentation
	Manual
	Examples

	Contributing source documentation
	Code style
	Playing in the mudbox
	Contributing applications
	Contributing system code
	Adding/removing to/from the build system
	Contributing non-MarSystem system code
	Contributing MarSystems

	Sending a patch
	Building documentation
	Build system details
	Command-line arguments
	Making a release

	Automatic testing
	Unit tests
	What are unit tests?
	What testing framework does Marsyas use?
	How do I add a new test?
	How do I run the tests?

	Black-box tests
	What does "black-box" mean?
	Definition

	How do I write a black-box test?
	How do the tests work?
	List of tests
	Approximate matching (no rounding errors)

	When a test fails...
	Don't panic!
	Updating the test
	Temporarily disabling a test

	Why should I care?
	Developers
	New users

	Daily Auto-tester

	The Index

